rewrite 100% unique 1500 words article in HTML format about
Smith, E. & Morowitz, H. J. The Origin and Nature of Life on Earth 677 (Cambridge Univ. Press, 2016).
Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168–13173 (2004).
Hartman, H. Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4, 359–370 (1975).
Goldford, J. E. & Segrè, D. Modern views of ancient metabolic networks. Curr. Opin. Syst. Biol. 8, 117–124 (2018).
Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).
Xu, J. et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60–66 (2020).
Yadav, M., Pulletikurti, S., Yerabolu, J. R. & Krishnamurthy, R. Cyanide as a primordial reductant enables a protometabolic reductive glyoxylate pathway. Nat. Chem. 14, 170–178 (2022).
Xavier, J. C., Hordijk, W., Kauffman, S., Steel, M. & Martin, W. F. Autocatalytic chemical networks at the origin of metabolism. Proc. Biol. Sci. 287, 20192377 (2020).
Xavier, J. C. & Kauffman, S. Small-molecule autocatalytic networks are universal metabolic fossils. Philos. Trans. R. Soc. A 380, 20210244 (2022).
Kauffman, S. A. The Origins of Order: Self-Organization and Selection in Evolution 709 (Oxford Univ. Press, 1993).
Kauffman, S. A. Autocatalytic sets of proteins. J. Theor. Biol. 119, 1–24 (1986).
Blokhuis, A., Lacoste, D. & Nghe, P. Universal motifs and the diversity of autocatalytic systems. Proc. Natl Acad. Sci. USA 117, 25230–25236 (2020).
Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. Biol. Sci. 269, 1721–1727 (2002).
Marshall, C. R. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol. 1, 0165 (2017).
Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).
Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, 6542 (2021).
Raymond, J. & Segrè, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).
Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134.e9 (2017).
Goldford, J. E., Hartman, H., Marsland, R. 3rd & Segrè, D. Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism. Nat. Ecol. Evol. 3, 1715–1724 (2019).
Tian, T. et al. Phosphates as energy sources to expand metabolic networks. Life 9, 43 (2019).
Lazcano, A. & Miller, S. L. On the origin of metabolic pathways. J. Mol. Evol. 49, 424–431 (1999).
Teichmann, S. A. et al. Small-molecule metabolism: an enzyme mosaic. Trends Biotechnol. 19, 482–486 (2001).
Teichmann, S. A. et al. The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. J. Mol. Biol. 311, 693–708 (2001).
Rison, S. C. G. & Thornton, J. M. Pathway evolution, structurally speaking. Curr. Opin. Struct. Biol. 12, 374–382 (2002).
Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).
Muto-Fujita, A. A novel model for the chemical evolution of metabolic networks. CICSJ Bulletin 37, 57–62 (2019).
Maeda, H. A. & Fernie, A. R. Evolutionary history of plant metabolism. Annu. Rev. Plant Biol. 72, 185–216 (2021).
Garcia, A. K., Cavanaugh, C. M. & Kacar, B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. ISME J. 15, 2183–2194 (2021).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Ebenhöh, O., Handorf, T. & Heinrich, R. Structural analysis of expanding metabolic networks. Genome Inform. 15, 35–45 (2004).
Handorf, T., Ebenhöh, O. & Heinrich, R. Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61, 498–512 (2005).
Kim, H., Smith, H. B., Mathis, C., Raymond, J. & Walker, S. I. Universal scaling across biochemical networks on Earth. Sci. Adv. 5, eaau0149 (2019).
Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. Lond. B 362, 1887–1926 (2007).
Camprubi, E., Jordan, S. F., Vasiliadou, R. & Lane, N. Iron catalysis at the origin of life. IUBMB Life 69, 373–381 (2017).
Muchowska, K. B., Varma, S. J. & Moran, J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569, 104–107 (2019).
Varma, S. J., Muchowska, K. B., Chatelain, P. & Moran, J. Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2, 1019–1024 (2018).
Springsteen, G., Yerabolu, J. R., Nelson, J., Rhea, C. J. & Krishnamurthy, R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat. Commun. 9, 91 (2018).
Muchowska, K. B. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).
Hadadi, N., Hafner, J., Shajkofci, A., Zisaki, A. & Hatzimanikatis, V. ATLAS of Biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth. Biol. 5, 1155–1166 (2016).
Hafner, J., MohammadiPeyhani, H., Sveshnikova, A., Scheidegger, A. & Hatzimanikatis, V. Updated ATLAS of Biochemistry with new metabolites and improved enzyme prediction power. ACS Synth. Biol. 9, 1479–1482 (2020).
Kappock, T. J., Ealick, S. E. & Stubbe, J. Modular evolution of the purine biosynthetic pathway. Curr. Opin. Chem. Biol. 4, 567–572 (2000).
Kun, A., Papp, B. & Szathmáry, E. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol. 9, R51 (2008).
Whicher, A., Camprubi, E., Pinna, S., Herschy, B. & Lane, N. Acetyl phosphate as a primordial energy currency at the origin of life. Orig. Life Evol. Biosph. 48, 159–179 (2018).
Harrison, S. A. & Lane, N. Life as a guide to prebiotic nucleotide synthesis. Nat. Commun. 9, 5176 (2018).
Pinna, S. et al. A prebiotic basis for ATP as the universal energy currency. PLoS Biol. 20, e3001437 (2022).
Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).
Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Ann. Rev. Earth Planet. Sci. 44, 647–683 (2016).
Marshall, S. M. et al. Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nat. Commun. 12, 3033 (2021).
Fontecilla-Camps, J. C. Geochemical continuity and catalyst/cofactor replacement in the emergence and evolution of life. Angew. Chem. Int. Ed. Engl. 58, 42–48 (2019).
Milner-White, E. J. & Russell, M. J. Functional capabilities of the earliest peptides and the emergence of life. Genes 2, 671–688 (2011).
Goldman, A. D. & Kacar, B. Cofactors are remnants of life’s origin and early evolution. J. Mol. Evol. https://doi.org/10.1007/s00239-020-09988-4 (2021)
Longo, L. M. et al. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc. Natl Acad. Sci. USA 117, 15731–15739 (2020).
Nitschke, W., McGlynn, S. E., Milner-White, E. J. & Russell, M. J. On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta 1827, 871–881 (2013).
Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).
Johnson, J. E. & Molnar, P. H. Widespread and persistent deposition of iron formations for two billion years. Geophys. Res. Lett. 46, 3327–3339 (2019).
Ma, B.-G. et al. Characters of very ancient proteins. Biochem. Biophys. Res. Commun. 366, 607–611 (2008).
Goldman, A. D., Beatty, J. T. & Landweber, L. F. The TIM barrel architecture facilitated the early evolution of protein-mediated metabolism. J. Mol. Evol. 82, 17–26 (2016).
Nath, N., Mitchell, J. B. O. & Caetano-Anollés, G. The natural history of biocatalytic mechanisms. PLoS Comput. Biol. 10, e1003642 (2014).
Aziz, M. F., Caetano-Anollés, K. & Caetano-Anollés, G. The early history and emergence of molecular functions and modular scale-free network behavior. Sci. Rep. 6, 25058 (2016).
Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363–366 (1966).
Lee, J. & Blaber, M. Experimental support for the evolution of symmetric protein architecture from a simple peptide motif. Proc. Natl Acad. Sci. USA 108, 126–130 (2011).
Smock, R. G., Yadid, I., Dym, O., Clarke, J. & Tawfik, D. S. De novo evolutionary emergence of a symmetrical protein is shaped by folding constraints. Cell 164, 476–486 (2016).
Yagi, S. et al. Seven amino acid types suffice to create the core fold of RNA polymerase. J. Am. Chem. Soc. 143, 15998–16006 (2021).
Seal, M. et al. Peptide–RNA coacervates as a cradle for the evolution of folded domains. J. Am. Chem. Soc. 144, 14150–14160 (2022).
Wierenga, R. K. The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett. 492, 193–198 (2001).
Longo, L. M. et al. On the emergence of P-Loop NTPase and Rossmann enzymes from a beta–alpha–beta ancestral fragment. eLife 9, e64415 (2020).
Bliven, S. E. et al. Analyzing the symmetrical arrangement of structural repeats in proteins with CE-Symm. PLoS Comput. Biol. 15, e1006842 (2019).
Granick, S. in Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 67–88 (Academic Press, 1965).
Horowitz, N. H. On the evolution of biochemical syntheses. Proc. Natl Acad. Sci. USA 31, 153–157 (1945).
Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).
Braakman, R. & Smith, E. The emergence and early evolution of biological carbon-fixation. PLoS Comput. Biol. 8, e1002455 (2012).
Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).
Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in Archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).
Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).
Hayes, J. M. Global methanotrophy at the Archean–Proterozoic transition. In Early Life on Earth. Nobel Symposium (ed. Bengston, S.) No. 84, 220–236 (Columbia Univ. Press, 1994).
Slotznick, S. P. & Fischer, W. W. Examining Archean methanotrophy. Earth Planet. Sci. Lett. 441, 52–59 (2016).
Prywes, N., Phillips, N. R., Tuck, O. T., Valentin-Alvarado, L. E. & Savage, D. F. Rubisco function, evolution, and engineering. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-040320-101244 (2023).
Kędzior, M. et al. Resurrected Rubisco suggests uniform carbon isotope signatures over geologic time. Cell Rep. 39, 110726 (2022).
Wang, R. Z. et al. Carbon isotope fractionation by an ancestral rubisco suggests that biological proxies for CO2 through geologic time should be reevaluated. Proc. Natl Acad. Sci. USA 120, e2300466120 (2023)
Braakman, R. & Smith, E. The compositional and evolutionary logic of metabolism. Phys. Biol. 10, 011001 (2013).
Lane, N. Transformer: The Deep Chemistry of Life and Death (W. W. Norton & Company, 2022).
Shuman, R. F., Shearin, W. E. & Tull, R. J. Chemistry of hydrocyanic acid. 1. Formation and reactions of N-(aminomethylene)diaminomaleonitrile, a hydrocyanic acid pentamer and precursor to adenine. J. Org. Chem. 44, 4532–4536 (1979).
Roy, D., Najafian, K. & von Ragué Schleyer, P. Chemical evolution: the mechanism of the formation of adenine under prebiotic conditions. Proc. Natl Acad. Sci. USA 104, 17272–17277 (2007).
Sousa, F. L., Hordijk, W., Steel, M. & Martin, W. F. Autocatalytic sets in E. coli metabolism. J. Syst. Chem. 6, 4 (2015).
Nunes Palmeira, R., Colnaghi, M., Harrison, S. A., Pomiankowski, A. & Lane, N. The limits of metabolic heredity in protocells. Proc. Biol. Sci. 289, 20221469 (2022).
Harrison, S. A., Palmeira, R. N., Halpern, A. & Lane, N. A biophysical basis for the emergence of the genetic code in protocells. Biochim. Biophys. Acta, Bioenerg. 1863, 148597 (2022).
Noor, E., Haraldsdóttir, H. S., Milo, R. & Fleming, R. M. T. Consistent estimation of Gibbs energy using component contributions. PLoS Comput. Biol. 9, e1003098 (2013).
Beber, M. E. et al. eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab1106 (2021).
Bertz, S. H. The first general index of molecular complexity. J. Am. Chem. Soc. 103, 3599–3601 (1981).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Cheng, H. et al. ECOD: an evolutionary classification of protein domains. PLoS Comput. Biol. 10, e1003926 (2014).
Cheng, H., Liao, Y., Schaeffer, R. D. & Grishin, N. V. Manual classification strategies in the ECOD database. Proteins 83, 1238–1251 (2015).
Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).
Source link