Paternal dietary macronutrient balance and energy intake drive metabolic and behavioral differences among offspring


  • Watkins, A. J., Rubini, E., Hosier, E. D. & Morgan, H. L. Paternal programming of offspring health. Early Hum. Dev. 150, 105185 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Billah, M. M., Khatiwada, S., Morris, M. J. & Maloney, C. A. Effects of paternal overnutrition and interventions on future generations. Int. J. Obes. 46, 901–917 (2022).

    Article 

    Google Scholar
     

  • Dimofski, P., Meyre, D., Dreumont, N. & Leininger-Muller, B. Consequences of paternal nutrition on offspring health and disease. Nutrients 13, 2818 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castro Barbosa, T. et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 5, 184–197 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Morgan, H. L. et al. Paternal diet impairs F1 and F2 offspring vascular function through sperm and seminal plasma specific mechanisms in mice. J. Physiol. 598, 699–715 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Cruz, R. S. et al. Paternal malnutrition programs breast cancer risk and tumor metabolism in offspring. Breast Cancer Res. 20, 1–14 (2018).


    Google Scholar
     

  • Zhou, Y. et al. Diet-induced paternal obesity impairs cognitive function in offspring by mediating epigenetic modifications in spermatozoa. Obesity 26, 1749–1757 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Paternal preconceptional diet enriched with n-3 polyunsaturated fatty acids affects offspring brain function in mice. Front. Nutr. 9, 969848 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fullston, T. et al. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, J. P., Wilson, A. J., Pilastro, A. & Garcia-Gonzalez, F. Ejaculate-mediated paternal effects: evidence, mechanisms and evolutionary implications. Reproduction 157, R109–R126 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F. & Chen, Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 15, 489–498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eid, N., Morgan, H. L. & Watkins, A. J. Paternal periconception metabolic health and offspring programming. Proc. Nutr. Soc. 81, 119–125 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santilli, F. & Boskovic, A. Mechanisms of transgenerational epigenetic inheritance: lessons from animal model organisms. Curr. Opin. Genet. Dev. 79, 102024 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eberle, C., Kirchner, M. F., Herden, R. & Stichling, S. Paternal metabolic and cardiovascular programming of their offspring: A systematic scoping review. PLOS One 15, e0244826 (2021).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin 15, 3 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, L. et al. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab. 23, 735–743 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boscardin, C., Manuella, F. & Mansuy, I. M. Paternal transmission of behavioural and metabolic traits induced by postnatal stress to the 5th generation in mice. Environ. Epigenets. 8, https://doi.org/10.1093/eep/dvac024 (2022).

  • Bromfield, J. J. et al. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl Acad. Sci. USA 111, 2200–2205 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, T. Y., Yaeger, J. D., Summers, C. H. & Mitra, R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci. Biobehav. Rev. 124, 137–150 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonduriansky, R. & Crean, A. J. What are parental condition-transfer effects and how can they be detected? Methods Ecol. Evol. 9, 450–456 (2018).

    Article 

    Google Scholar
     

  • Ng, S. F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radford, E. J. et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pini, T., Raubenheimer, D., Simpson, S. J. & Crean, A. J. Obesity and male reproduction; placing the Western diet in context. Front. Endocrinol. 12, https://doi.org/10.3389/fendo.2021.622292 (2021).

  • Raubenheimer, D., Simpson, S. J. & Mayntz, D. Nutrition, ecology and nutritional ecology: Toward an integrated framework. Funct. Ecol. 23, 4–16 (2009).

    Article 

    Google Scholar
     

  • Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, S. J. et al. The geometric framework for nutrition as a tool in precision medicine. Nutr. Healthy Aging 4, 217–226 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, S. J. & Raubenheimer, D. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133–142 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raubenheimer, D. & Simpson, S. J. Protein leverage: theoretical foundations and ten points of clarification. Obesity 27, 1225–1238 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raubenheimer, D. Toward a quantitative nutritional ecology: the right‐angled mixture triangle. Ecol. Monogr. 81, 407–427 (2011).

    Article 

    Google Scholar
     

  • Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huypens, P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watkins, A. J. & Sinclair, K. D. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol.-Heart Circulatory Physiol. 306, H1444–H1452 (2014).

    Article 
    CAS 

    Google Scholar
     

  • McPherson, N. O. et al. Paternal under-nutrition programs metabolic syndrome in offspring which can be reversed by antioxidant/vitamin food fortification in fathers. Sci. Rep. 6, 1–14 (2016).

    Article 

    Google Scholar
     

  • Watkins, A. J. et al. Paternal diet programs offspring health through sperm-and seminal plasma-specific pathways in mice. Proc. Natl Acad. Sci. USA 115, 10064–10069 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodden, C. et al. Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity, and social behavior. FASEB J. 36, e21981 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korgan, A. C., O’Leary, E., King, J. L., Weaver, I. C. G. & Perrot, T. S. Effects of paternal high-fat diet and rearing environment on maternal investment and development of defensive responses in the offspring. Psychoneuroendocrinology 91, 20–30 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, N. & King, S. M. Influence of circadian phase and test illumination on pre-clinical models of anxiety. Physiol. Behav. 72, 99–106 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsao, C.-H., Flint, J. & Huang, G.-J. Influence of diurnal phase on behavioral tests of sensorimotor performance, anxiety, learning and memory in mice. Sci. Rep. 12, 432 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascoal, Gd. F. L., Geraldi, M. V., Maróstica, M. R. & Ong, T. P. Effect of paternal diet on spermatogenesis and offspring health: Focus on epigenetics and interventions with food bioactive compounds. Nutrients 14, 2150 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solon-Biet, S. M. et al. Meta-analysis links dietary branched-chain amino acids to metabolic health in rodents. BMC Biol. 20, 19 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wali, J. A. et al. Impact of dietary carbohydrate type and protein–carbohydrate interaction on metabolic health. Nat. Metab. 3, 810–828 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piper, M. D. et al. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 610–621 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simopoulos, A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365–379 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crean, A. J. et al. Male reproductive traits are differentially affected by dietary macronutrient balance but unrelated to adiposity. Nat. Commun. 14, 2566 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reeves, P. G., Nielsen, F. H. & Fahey, G. C. Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76a rodent diet. J. Nutr. 123, 1939–1951 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheffé, H. Experiments with mixtures. J. R. Stat. Soc.: Ser. B (Methodol.) 20, 344–360 (1958).

    MathSciNet 

    Google Scholar
     

  • Simpson, S. J., Raubenheimer, D., Charleston, M. A. & Clissold, F. J. Modelling nutritional interactions: from individuals to communities. Trends Ecol. Evol. 25, 53–60 (2010).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    You May Also Like