Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields


  • Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heffer, P. & Prud’ homme, M. Global nitrogen fertiliser demand and supply: trend, current level and outlook. In Proceedings of the 2016 International Nitrogen Initiative Conference, “Solutions to Improve Nitrogen Use Efficiency for the World”. Melbourne, Australia 4–8 (2016).

  • Liu, C., Watanabe, M. & Wang, Q. Changes in nitrogen budgets and nitrogen use efficiency in the agroecosystems of the Changjiang river basin between 1980 and 2000. Nutr. Cycl. Agroecosyst. 80, 19–37 (2007).

    Article 

    Google Scholar
     

  • Masuda, Y., Matsumoto, T., Isobe, K. & Senoo, K. Denitrification in paddy soil as a cooperative process of different nitrogen oxide reducers, revealed by metatranscriptomic analysis of denitrification-induced soil microcosm. Soil Sci. Plant. Nutr. 65, 342–345 (2019).

    Article 

    Google Scholar
     

  • Opdyke, M. R., Ostrom, N. E. & Ostrom, P. H. Evidence for the predominance of denitrification as a source of N2O in temperate agricultural soils based on isotopologue measurements. Glob. Biogeochem. Cycles 23, GB4018 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Stein, L. Y. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol. 28, 500–511 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y., Zheng, Y., Bodelier, P. L., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, L.-D. et al. Activity, abundance and community composition of nitrite-dependent methanotrophs in response to fertilization in paddy soils. Appl. Soil Ecol. 166, 103987 (2021).

    Article 

    Google Scholar
     

  • Hui, C. et al. Depth-specific distribution and diversity of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in upland-cropping soil under different fertilizer treatments. Appl. Soil Ecol. 113, 117–126 (2017).

    Article 

    Google Scholar
     

  • Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kirk, G. J. D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New. Phytol. 159, 185–194 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone. Environ. Sci. Technol. 53, 203–212 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roland, F. A. E., Darchambeau, F., Morana, C., Bouillon, S. & Borges, A. V. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere 168, 756–764 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. J. et al. Simultaneous enhancement of nitrate removal flux and methane utilization efficiency in MBFR for aerobic methane oxidation coupled to denitrification by using an innovative scalable double-layer membrane. Water Res. 194, 116936 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Q. et al. Methylobacter couples methane oxidation and N2O production in hypoxic wetland soil. Soil Biol. Biochem. 175, 108863 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol. 26, 703–714 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, R. et al. Metabolic flexibility of aerobic methanotrophs under anoxic conditions in arctic lake sediments. ISME J. 16, 78–90 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strong, P. J., Xie, S. & Clarke, W. P. Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49, 4001–4018 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Knowles, R. Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol. Eng. 24, 441–446 (2005).

    Article 

    Google Scholar
     

  • Sun, F. Y. et al. Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresour. Technol. 145, 2–9 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res. 90, 203–215 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kits, K. D., Klotz, M. G. & Stein, L. Y. Methane oxidation coupled to nitrate reduction under hypoxia by the gammaproteobacterium methylomonas denitrificans, sp. Nov. Type strain FJG1. Environ. Microbiol. 17, 3219–3232 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Z. et al. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agr. Ecosyst. Environ. 152, 1–9 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bai, X., Zhang, H., Chen, F., Sun, G. & Li, Y. Tillage effects on CH4 and N2O emission from double cropping paddy field. Trans. CSAE 26, 282–289 (2010).


    Google Scholar
     

  • Costa, C. et al. Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl. Microbiol. Biot. 53, 754–762 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M., Daraz, U., Sun, Q., Chen, P. & Wei, X. Denitrifier abundance and community composition linked to denitrification potential in river sediments. Environ. Sci. Pollut. Res. 28, 51928–51939 (2021).

    Article 

    Google Scholar
     

  • Tsiknia, M., Paranychianakis, N. V., Varouchakis, E. A. & Nikolaidis, N. P. Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiol. Ecol. 91, fiv052 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, H., Liu, S., Liu, T., Yuan, Z. G. & Guo, J. H. Efficient nitrate removal from synthetic groundwater via in situ utilization of short-chain fatty acids from methane bioconversion. Chem. Eng. J. 393, 124594 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, I. T. et al. Development of a combined aerobic–anoxic and methane oxidation bioreactor system using mixed methanotrophs and biogas for wastewater denitrification. Water 11, 1377 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shi, L.-D. et al. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nat. Geosci. 13, 799–805 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C. & Fitter, A. H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4, 337–345 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Brune, A., Frenzel, P. & Cypionka, H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol. Rev. 24, 691–710 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Modin, O., Fukushi, K. & Yamamoto, K. Denitrification with methane as external carbon source. Water Res. 41, 2726–2738 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuo, Y., Xing, D., Regan, J. M. & Logan, B. E. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74, 3130–3137 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, J. et al. The functional repertoire contained within the native microbiota of the model nematode caenorhabditis elegans. ISME J. 14, 26–38 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Graaff, D. R., van Loosdrecht, M. C. M. & Pronk, M. Stable granulation of seawater-adapted aerobic granular sludge with filamentous thiothrix bacteria. Water Res. 175, 115683 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Research on microbial structures, functions and metabolic pathways in an advanced denitrification system coupled with aerobic methane oxidation based on metagenomics. Bioresour. Technol. 332, 125047 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yun, H. et al. Enhanced biotransformation of triclocarban by ochrobactrum sp. Tcc-1 under anoxic nitrate respiration conditions. Curr. Microbiol. 74, 491–498 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang, Y. & Wang, J. Various electron donors for biological nitrate removal: a review. Sci. Total Environ. 794, 148699 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Joe-Wong, C. & Maher, K. A model for kinetic isotope fractionation during redox reactions. Geochim. Cosmochim. Acta 269, 661–677 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tieszen, L. L. & Boutton, T. W. Stable Isotopes in Ecological Research 167–195 (Springer, 1989).

  • Xu, X., Wu, W., Li, X., Zhao, C. & Qin, Y. Metagenomics coupled with thermodynamic analysis revealed a potential way to improve the nitrogen removal efficiency of the aerobic methane oxidation coupled to denitrification process under the hypoxic condition. Sci. Total Environ. 912, 168953 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, C.-Y. et al. Management of biofilm by an innovative layer-structured membrane for membrane biofilm reactor (MBfR) to efficient methane oxidation coupled to denitrification (AME-D). Water Res. 251, 121107 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, Y. et al. Unimodal response of soil methane consumption to increasing nitrogen additions. Environ. Sci. Technol. 53, 4150–4160 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Attenuation of methane oxidation by nitrogen availability in arctic tundra soils. Environ. Sci. Technol. 269, 661–677 (2023).


    Google Scholar
     

  • Stein, L. Y. & Klotz, M. G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 39, 1826–1831 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaftha, J. B., Strijdom, B. W. & Steyn, P. L. Characterization of pigmented methylotrophic bacteria which nodulate lotononis bainesii. Syst. Appl. Microbiol. 25, 440–449 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanukollu, S. et al. Methanol utilizers of the rhizosphere and phyllosphere of a common grass and forb host species. Environ. Microbiome 17, 35 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blagodatskaya, Е & Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fert. Soils 45, 115–131 (2008).

    Article 

    Google Scholar
     

  • Steenbergh, A. K., Meima, M. M., Kamst, M. & Bodelier, P. L. Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiol. Ecol. 71, 12–22 (2009).

    Article 

    Google Scholar
     

  • Su, X. et al. Estuarine plastisphere as an overlooked source of N2O production. Nat. Commun. 13, 3884 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, X., Chen, Y., Wang, Y., Yang, X. & He, Q. Impacts of chlorothalonil on denitrification and N2O emission in riparian sediments: microbial metabolism mechanism. Water Res. 148, 188–197 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conrad, R., Frenzel, P. & Cohen, Y. Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol. Ecol. 16, 297–305 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Börjesson, G., Sundh, I., Tunlid, A., Frostegård, Å. & Svensson, B. H. Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol. Ecol. 26, 207–217 (1998).

    Article 

    Google Scholar
     

  • Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–264 (1947).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magoc, T. & Salzberg, S. L. Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, C., Stevens, R., Laughlin, R., Azam, F. & Ottow, J. The nitrification inhibitor DMPP had no effect on denitrifying enzyme activity. Soil Biol. Biochem. 34, 1825–1827 (2002).

    Article 

    Google Scholar
     

  • Huang, T. et al. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous fluvo-aquic soil. Sci. Rep. 4, 3950 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Florio, A., Maienza, A., Dell’Abate, M. T., Stazi, S. R. & Benedetti, A. Changes in the activity and abundance of the soil microbial community in response to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). J. Soils Sediment. 16, 2687–2697 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bozal-Leorri, A., González-Murua, C., Marino, D., Aparicio-Tejo, P. M. & Corrochano-Monsalve, M. Assessing the efficiency of dimethylpyrazole-based nitrification inhibitors under elevated CO2 conditions. Geoderma 400, 115160 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Whittenbury, R., Phillips, K. & Wilkinson, J. Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 61, 205–218 (1970).

    CAS 

    Google Scholar
     

  • Dedysh, S. N. et al. Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol. Ecol. 43, 299–308 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. et al. Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Appl. Environ. Microbiol. 87, 2301–2320 (2020).


    Google Scholar
     

  • Lu, X. et al. Methylmercury uptake and degradation by methanotrophs. Sci. Adv. 3, e1700041 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, R. et al. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J. 6, 1937–1948 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. Methane-derived carbon flows into host-virus networks at different trophic levels in soil. Proc. Natl Acad. Sci. USA 118, e2105124118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wigley, K. et al. RNA stable isotope probing and high‐throughput sequencing to identify active microbial community members in a methane‐driven denitrifying biofilm. J. Appl. Microbiol. 132, 1526–1542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lide, D. R. & Frederikse, H. CRC Handbook of Chemistry and Physics (CRC Press, Inc, 1995).

  • Shi, L.-D. et al. Methane-dependent selenate reduction by a bacterial consortium. ISME J. 15, 1–10 (2021).

    Article 

    Google Scholar
     

  • Dumont, M. G. & Murrell, J. C. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S. & Cornwallis, C. K. Direct PCR offers a fast and reliable alternative to conventional DNA isolation methods for gut microbiomes. mSystems 2, e00132–00117 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murdock, S. A. & Juniper, S. K. Capturing compositional variation in denitrifying communities: a multiple-primer approach that includes Epsilonproteobacteria. Appl. Environ. Microbiol. 83, e02753–e02816 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Global co-occurrence of methanogenic archaea and methanotrophic bacteria in microcystis aggregates. Environ. Microbiol. 23, 6503–6519 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Evaluation and redesign of the primers for detecting nitrogen cycling genes in environments. Methods Ecol. Evol. 13, 1976–1989 (2022).

    Article 

    Google Scholar
     

  • Liu, Y. R. et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ. Sci. Technol. 52, 13110–13118 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).

    Article 

    Google Scholar
     

  • Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. Peer J. 3, e1165 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uritskiy, G. V., DiRuggiero, J. & Taylor, J. Metawrap—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., Parks, D. H. & Hancock, J. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, Z. S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring archaea. Nat. Commun. 10, 4574 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z., Tran, P. Q., Kieft, K. & Anantharaman, K. Genome diversification in globally distributed novel marine proteobacteria is linked to environmental adaptation. ISME J. 14, 2060–2077 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, A. M., Macori, G., Kilcawley, K. N. & Cotter, P. D. Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. Nat. Food 1, 500–510 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ani analysis of 90k prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aramaki, T. et al. KoFamkoala: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Crécy-Lagard, V., Graf, D. R. H., Jones, C. M. & Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 9, e114118 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Arora, J. et al. The functional evolution of termite gut microbiota. Microbiome 10, 78 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, L. et al. Presence and role of viruses in anaerobic digestion of food waste under environmental variability. Microbiome 11, 170 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Perez, C. et al. Phylogenetically and functionally diverse microorganisms reside under the ross ice shelf. Nat. Commun. 13, 117 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millard, P. et al. IsoCor: isotope correction for high-resolution MS labeling experiments. Bioinformatics 35, 4484–4487 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stone, M. M., DeForest, J. L. & Plante, A. F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the luquillo critical zone observatory. Soil Biol. Biochem. 75, 237–247 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Delgadobaquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grace, J. B. Structural Equation Modeling and Natural Systems, Vol. 8, 368–369 (Cambridge University Press, 2006).

  • Bastian, M., Heymann, S. & Jacomy, M. in Proceedings of the Third International Conference on Weblogs and Social Media, ICWSM 2009, San Jose, California, USA, May 17-20, 361–362 (2009).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    You May Also Like