Leveraging continuous glucose monitoring for personalized modeling of insulin-regulated glucose metabolism


  • Galicia-Garcia, U. et al. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21, 6275. https://doi.org/10.3390/ijms21176275 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Classification of diabetes mellitus (World Health Organization, 2019).

  • Committee, American Diabetes Association Professional Practice. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care 45, S17–S38. https://doi.org/10.2337/dc22-S002 (2021).

    Article 

    Google Scholar
     

  • Wortham, M. & Sander, M. Mechanisms of \(\beta\)-cell functional adaptation to changes in workload. Diabetes Obes. Metab. 18, 78–86. https://doi.org/10.1111/dom.12729 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol.-Endocrinol. Metab. 237, E214. https://doi.org/10.1152/ajpendo.1979.237.3.E214 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462–1470. https://doi.org/10.2337/diacare.22.9.1462 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdul-Ghani, M. A., Matsuda, M., Balas, B. & DeFronzo, R. A. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30, 89–94. https://doi.org/10.2337/dc06-1519 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Donovan, S. D. et al. Improved quantification of muscle insulin sensitivity using oral glucose tolerance test data: The MISI Calculator. Sci. Rep. 9, 9388. https://doi.org/10.1038/s41598-019-45858-w (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthews, D. R. et al. Homeostasis model assessment: Insulin resistance and \(\beta\)-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419. https://doi.org/10.1007/BF00280883 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, B. & Saxena, A. Surrogate markers of insulin resistance: A review. World J. Diabetes 1, 36–47. https://doi.org/10.4239/wjd.v1.i2.36 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergman, R. N., Ider, Y. Z., Bowden, C. R. & Cobelli, C. Quantitative estimation of insulin sensitivity. Am. J. Physiol.-Endocrinol. Metab. 236, E667. https://doi.org/10.1152/ajpendo.1979.236.6.E667 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Dalla Man, C., Caumo, A. & Cobelli, C. The oral glucose minimal model: Estimation of insulin sensitivity from a meal test. IEEE Trans. Biomed. Eng. 49, 419–429. https://doi.org/10.1109/10.995680 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Palumbo, P., Ditlevsen, S., Bertuzzi, A. & De Gaetano, A. Mathematical modeling of the glucose-insulin system: A review. Math. Biosci. 244, 69–81. https://doi.org/10.1016/j.mbs.2013.05.006 (2013).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Maas, A. et al. A physiology-based model describing heterogeneity in glucose metabolism: The core of the eindhoven diabetes education simulator (e-des). J. Diabetes Sci. Technol. 9, 282–292. https://doi.org/10.1177/1932296814562607 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Donovan, S. D. et al. Quantifying the contribution of triglycerides to metabolic resilience through the mixed meal model. Iscience 25, 105206 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Sloun, B. et al. E-DES-PROT: A novel computational model to describe the effects of amino acids and protein on postprandial glucose and insulin dynamics in humans. iScience 26, 106218. https://doi.org/10.1016/j.isci.2023.106218 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erdős, B. et al. Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge. PLOS Computat. Biol. 17, e1008852. https://doi.org/10.1371/journal.pcbi.1008852 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Venkatesh, K. P., Raza, M. M. & Kvedar, J. C. Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation. npj Digit. Med. 5, 150. https://doi.org/10.1038/s41746-022-00694-7 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094. https://doi.org/10.1016/j.cell.2015.11.001 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klupa, T. et al. Expanding the role of continuous glucose monitoring in modern diabetes care beyond type 1 disease. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 14, 1241–1266. https://doi.org/10.1007/s13300-023-01431-3 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 11, 42–57. https://doi.org/10.1016/S2213-8587(22)00319-9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coorey, G. et al. The health digital twin to tackle cardiovascular disease-a review of an emerging interdisciplinary field. npj Digit. Med. 5, 126. https://doi.org/10.1038/s41746-022-00640-7 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodbard, D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther. 18, S2-3. https://doi.org/10.1089/dia.2015.0417 (2016).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Pleus, S. et al. Rate-of-change dependence of the performance of two cgm systems during induced glucose swings. J. Diabetes Sci. Technol. 9, 801–807. https://doi.org/10.1177/1932296815578716 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freckmann, G. et al. Standardization process of continuous glucose monitoring: Traceability and performance. Clin. Chim. Acta 515, 5–12. https://doi.org/10.1016/j.cca.2020.12.025 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pleus, S. et al. Differences in venous, capillary and interstitial glucose concentrations in individuals without diabetes after glucose load. J. Lab. Med. 47, 97–104. https://doi.org/10.1515/labmed-2023-0013 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Goel, P., Parkhi, D., Barua, A., Shah, M. & Ghaskadbi, S. A minimal model approach for analyzing continuous glucose monitoring in type 2 diabetes. Front. Physiol. 9, 326748 (2018).

    Article 

    Google Scholar
     

  • Eichenlaub, M. M., Hattersley, J. G. & Khovanova, N. A. A Minimal Model Approach for the Description of Postprandial Glucose Responses from Glucose Sensor Data in Diabetes Mellitus. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference2019, 265–268, https://doi.org/10.1109/EMBC.2019.8857195 (2019).

  • Ng, E., Kaufman, J. M., van Veen, L. & Fossat, Y. A parsimonious model of blood glucose homeostasis. PLOS Digit. Health 1, 1–17. https://doi.org/10.1371/journal.pdig.0000072 (2022).

    Article 

    Google Scholar
     

  • Trouwborst, I. et al. Cardiometabolic health improvements upon dietary intervention are driven by tissue-specific insulin resistance phenotype: A precision nutrition trial. Cell Metab. 35, 71–83 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gijbels, A. et al. The PERSonalized glucose optimization through nutritional intervention (PERSON) study: Rationale, design and preliminary screening results. Front. Nutr. 8, 694568 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maas, A. Playing with Numbers: The Development of an Educational Diabetes Game (Technische Universiteit Eindhoven, 2017).


    Google Scholar
     

  • Faggionato, E., Schiavon, M., Ekhlaspour, L., Buckingham, B. A. & Dalla Man, C. The minimally-invasive oral glucose minimal model: Estimation of gastric retention, glucose rate of appearance, and insulin sensitivity from type 1 diabetes data collected in real-life conditions. IEEE Transactions on Biomedical Engineering 1–9, https://doi.org/10.1109/TBME.2023.3324206 (2023).

  • Rackauckas, C. & Nie, Q. DifferentialEquations.jl-a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5, 15 (2017).

    Article 

    Google Scholar
     

  • Erdős, B. et al. Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in the Maastricht study. PLoS ONE 18, 1–16. https://doi.org/10.1371/journal.pone.0285820 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Arnoud, A., Guvenen, F. & Kleineberg, T. Benchmarking Global Optimizers (National Bureau of Economic Research, 2019).

    Book 

    Google Scholar
     

  • Borisov, I. & Metelkin, E. Confidence intervals by constrained optimization-an algorithm and software package for practical identifiability analysis in systems biology. PLoS Comput. Biol. 16, 1–13. https://doi.org/10.1371/journal.pcbi.1008495 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wieland, F.-G., Hauber, A. L., Rosenblatt, M., Tönsing, C. & Timmer, J. On structural and practical identifiability. Curr. Opin. Syst. Biol. 25, 60–69. https://doi.org/10.1016/j.coisb.2021.03.005 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Raue, A. et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25, 1923–1929. https://doi.org/10.1093/bioinformatics/btp358 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuart, A. M. Inverse problems: A Bayesian perspective. Acta Numer. 19, 451–559. https://doi.org/10.1017/S0962492910000061 (2010).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Linden, N. J., Kramer, B. & Rangamani, P. Bayesian parameter estimation for dynamical models in systems biology. PLoS Comput. Biol. 18, 1–48. https://doi.org/10.1371/journal.pcbi.1010651 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Færch, K. et al. Discordance between glucose levels measured in interstitial fluid vs in venous plasma after oral glucose administration: A post-hoc analysis from the randomised controlled PRE-D trial. Front. Endocrinol. 12, 753810 (2021).

    Article 

    Google Scholar
     

  • Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet (London, England) 383, 1068–1083. https://doi.org/10.1016/S0140-6736(13)62154-6 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gastaldelli, A., Abdul Ghani, M. & DeFronzo, R. A. Adaptation of insulin clearance to metabolic demand is a key determinant of glucose tolerance. Diabetes 70, 377–385. https://doi.org/10.2337/db19-1152 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, E. B., Sherry, N. A., Palmer, J. P., Herold, K. C., DPT-1 Study Group. The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia 49, 261–270. https://doi.org/10.1007/s00125-005-0100-8 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitabchi, A. E. et al. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: Effects of lifestyle intervention and metformin. Diabetes 54, 2404–2414. https://doi.org/10.2337/diabetes.54.8.2404 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Mulder, S. T. et al. Dynamic digital twin: Diagnosis, treatment, prediction, and prevention of disease during the life course. J. Med. Internet Res. 24, e35675. https://doi.org/10.2196/35675 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Brink, W. J., van den Broek, T. J., Palmisano, S., Wopereis, S. & de Hoogh, I. M. Digital biomarkers for personalized nutrition: Predicting meal moments and interstitial glucose with non-invasive, wearable technologies. Nutrients 14, 4465. https://doi.org/10.3390/nu14214465 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abeltino, A. et al. Putting the personalized metabolic avatar into production: A comparison between deep-learning and statistical models for weight prediction. Nutrients 15, 1199. https://doi.org/10.3390/nu15051199 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, A. & Thevis, M. Analysis of insulin and insulin analogs from dried blood spots by means of liquid chromatography-high resolution mass spectrometry. Drug Test. Anal. 10, 1761–1768. https://doi.org/10.1002/dta.2518 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973. https://doi.org/10.1038/s41591-020-0934-0 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arpaia, P., Cesaro, U., Frosolone, M., Moccaldi, N. & Taglialatela, M. A micro-bioimpedance meter for monitoring insulin bioavailability in personalized diabetes therapy. Sci. Rep. 10, 13656. https://doi.org/10.1038/s41598-020-70376-5 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodbard, D. Characterizing accuracy and precision of glucose sensors and meters. J. Diabetes Sci. Technol. 8, 980–985. https://doi.org/10.1177/1932296814541810 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard, R., Guo, J. & Hall, K. D. Imprecision nutrition? Different simultaneous continuous glucose monitors provide discordant meal rankings for incremental postprandial glucose in subjects without diabetes. Am. J. Clin. Nutr. 112, 1114–1119. https://doi.org/10.1093/ajcn/nqaa198 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merino, J. et al. Validity of continuous glucose monitoring for categorizing glycemic responses to diet: Implications for use in personalized nutrition. Am. J. Clin. Nutr. 115, 1569–1576. https://doi.org/10.1093/ajcn/nqac026 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cengiz, E. & Tamborlane, W. V. A tale of two compartments: Interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 11, S11-16. https://doi.org/10.1089/dia.2009.0002 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Barua, S., Wierzchowska-McNew, R. A., Deutz, N. E. & Sabharwal, A. Discordance between postprandial plasma glucose measurement and continuous glucose monitoring. Am. J. Clin. Nutr. 116, 1059–1069. https://doi.org/10.1093/ajcn/nqac181 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    You May Also Like